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Abstract

Deep neural networks (DNNs) have become pervasive within low latency
Function as a Service (FaaS) prediction pipelines, but suffers from two ma-
jor sources of latency overhead: 1) the round-trip network latency between
FaaS container and a remote model serving process; 2) Deep Learning (DL)
framework runtime instantiation and model loading from storage to CPU
or GPU memory. While models servers process solves the latter, they do so
by eternally persisting models within memory — introduces resource waste
and increases cost. With FaaS environments, models are frequently shared:
image recognition, object detection, NLP, and speech synthesis for exam-
ple. We propose TrIMS, a multi-tier software caching layer on top of FaaS
worker machines to solve this problem. Our solution consists of a manag-
ing model within caches that span GPUs, CPUs, local and cloud storage
through a resource management service. This enables sharing models across
user processes within a system while guaranteeing isolation, a succinct set of
APIs and container technologies for easy and transparent integration with
FaaS, DL frameworks and user code. Moreover, we show that by adopting
this technique, we are able to oversubscribe the system without degrad-
ing the baseline latency. We evaluate our solution by interfacing TrIMS
with the Apache MXNet framework and demonstrate up to 24× speedup
in latency for image classification models.

Preprint. Work in progress.
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Figure 1: Percentage of time spent in model (with ids corresponding to Table 2) load-
ing, inference computation, and image preprocessing for “cold start” online DL inference
(batchsize = 1) using CPU and GPU for MXNet, Caffe, Caffe2, and TensorFlow on an IBM
S822LC with Pascal GPUs. The speedup of using GPU over CPU for the inference compute
alone is shown between the pie charts. Inference time for all frameworks is dominated by
model loading except for small models, such as SqueezeNet, where the model size is a few
megabytes. For TensorFlow, high GPU initialization overhead impacts the end-to-end time
and the achieved speedup.

1 Introduction

Today, many business-logic and consumer applications rely on DL inference as core com-
ponents within their pipelines. These pipelines tend to be deployed to the cloud through
Function as a Service (FaaS) platforms [7, 1, 4, 8], since they abstract away low-level details
such as system setup, dev-ops, and monitoring — promising service isolation, decentraliza-
tion, and scalability, while still being more cost-effective compared to dedicated servers.
Since FaaS services execute arbitrary user pipelines, FaaS system must execute code in
isolation — through virtual machines (VMs) or containers.
Current off-the-shelf DL inference [10, 2, 6, 3, 9] is performed through HTTP APIs and uses
pre-built general models (model catalogs) deployed by the cloud provider Within the FaaS
pipelines, users interact with these remote models inference services through network and
construct their prediction pipelines by defining glue code that parse the input, perform the
model prediction, and process the output. There are two type of model inference services,
batch inference and online inference. Batch inference is performed offline on a large set of
inputs, while online inference is usually performed in real-time on a one-by-one basis [11, 14].
In this paper we focus on online inferences within a latency sensitive function in FaaS.
Function as a Service (FaaS) is a cost-effective way for users to deploy functions or pipelines
that are executed within the cloud. Users define prediction pipelines that use models they
deployed or ones found within the model catalog. The pipelines are then mapped to a fabric
of containers — used to maintain software stack separation, virtualize system resources, and
provide isolation — that run on physical machines. FaaS can be used to express latency
sensitive prediction pipelines that leverage a chain or ensemble of models. However, the
current practice of integrating FaaS with model catalogs is inefficient for this usage —
the “cold start” model load latency associated with the inference limits how complex or
intelligent a pipeline can be — making these pipelines out of reach for most but the cloud
giants. DL service providers are aware of the “cold start” cost of inference, and therefore
eagerly persist models within their catalog — keeping the models in memory (“warm”) to
guarantee the promised latency. For example, for premium cost, Amazon ML attempts to
respond to most real-time prediction requests within 100ms [12]. This introduces waste and
increases the cost of inference, yet without model persistence, model loading contributes to
a significant portion of the end-to-end inference latency.
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We observe that for “cold start” model inference, model loading (I/O, data structure de-
serialization, GPU data movement) is the main source of “cold start” latency. Figure 1
shows the “cold start” inference time breakdown for popular DL frameworks: Caffe [26],
Caffe2 [25], MXNet [17], and TensorFlow [15]. For GPU inference, data movement is an-
other contributing factor making GPU less attractive for accelerating inference — even
though GPUs offer a significant compute speed advantage, as shown in Figure 1.
An insight is that within a cloud setting DL models are shared extensively across user func-
tions or use common API to perform ML related tasks. For example, Google reported that
41 natural translation models can accommodate over 75% of their translation requests in [6].
Because model parameters are constant, we can leverage model sharing across pipelines by
persisting model parameters in GPU and/or CPU memory, hence eliminating the model
loading overhead, decreasing the end-to-end latency, and reducing the memory footprint
for DL inferences. Based on this observation, we propose TrIMS to eliminate model load-
ing overhead and hardware resource waste, while maintaining resource utilization efficiency
and decreasing inference latency in user processes. TrIMS achieves this by folding “private
copies” of the model into a shared copy under the hood.
In this paper, we propose a Transparent and Isolated Model Sharing (TrIMS) scheme to
address the “cold start” latency challenge faced by collocating user code with model catalogs
within FaaS — it does so while maintaining the isolation constraints, minimizing model-
loading overhead, and increasing hardware resource utilization. We describe TrIMS’s model
resource manager (MRM) which offers a multi-tiered cache for DL models to be shared
across user pipelines. By decreasing model loading and data movement overhead, TrIMS
decreases latency of end-to-end model inference, making inference on GPU a viable target.
TrIMS also increases memory efficiency for cloud data centers while maintaining accuracy.
Specifically, this paper makes the following contributions:

• We characterize the “cold start” overhead for online DL model inference across popular
DL frameworks, such as Caffe, Caffe2, MXNet, and TensorFlow, on both CPUs and
GPUs and identify model loading as the bottleneck.

• We propose TrIMS to mitigate the model loading overhead faced by collocating user code
with model catalogs within FaaS, and increase the model serving efficiency by sharing DL
models across all levels of the memory hierarchy in the cloud environment — GPU, CPU,
local storage, and remote storage. To our knowledge, this work is the first to propose
sharing DL models across isolated online prediction pipelines while increasing hardware
efficiency and decreasing latency.

• We implement TrIMS within Apache MXNet [17] and evaluate the impact on online
inference performance for a representative set of models and systems. We show that
TrIMS provides 1.12× – 24× speedup and is within 20% of ideal speedup (with ideal
being that model loading and data movement takes no time).

• TrIMS eliminates a substantial part of the non-compute components of the end-to-end
latency, making DL model inference on GPU and novel compute accelerator more viable.

• We architect TrIMS so that it can be easily integrated with existing frameworks without
user code changes. The method is designed to be compatible with existing framework
usage patterns, and requires minimal modifications for framework developers.

2 TrIMS Design

Within TrIMS, models are managed by the Model Resource Manager (MRM) server.
TrIMS’s MRM is a model server daemon that performs model management and place-
ment — abstracting away the model loading from framework clients. Each framework client
communicates with MRM through inter-process communication (IPC). MRM maintains a
database of models, addressing them using namespaces, with framework as well as model
name and version being used to distinguish models. Figure 2a shows that MRM is manag-
ing models for MXNet, Caffe2 DL frameworks as well as word vector embedding models for
FastText and Glove. The MRM placement manager then maps the models into either GPU
memory, CPU memory, local storage, or cloud storage. The four levels are analogous to the

3



MXNet/

AlexNet

VGG16

Inception v4

DenseNet

Caffe2/

AlexNet

VGG16

Inception v4

DenseNet

Glove/

English

Spanish

French

Chinese

FastText/

English

Spanish

French

Chinese

Client 1

Open

Client 2

Open

Download Model

Client 3

Client 4

Close

TrIMS MRM

Open

Cloud
Storage

(a) TrIMS’ MRM.

TrIMS Model Resource Manager

Model 
Resource
Database

gRPC
Server

TrIMS Client 1

gRPC
Stub

Caffe 
Library

TrIMS Client 2

gRPC
Stub

MXNet 
Library

struct ModelRequest {
  string model_name;
  string path;
  ReqConfig config;
}

struct ModelHandle {
  string id;
  string model_id;
  int64 byte_count;
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(b) TrIMS model load cycle.

import mxnet as mx
from mlprovider import vision, nlp, audio

def serve_request(net, request):
  img_input       = <<<process input>>>
  img_labels      = vision.classify(img_input)
  img_description = nlp.sentence_generate(img_label)
  audio           = audio.synthasize(img_description)
  return audio

TrIMS MXNet Framework Client

TrIMS MRM

User 1 Function

Container IPCUser 1 Container

vision models language 
models audio models

CPU Memory GPU Memory Local Storage Cloud Storage

text models

User 3 Container

User 2 Container

(c) TrIMS usage within FaaS.

traditional CPU cache hierarchy. Because of this, we will simply refer to these four different
memory hierarchies as “cache” in the rest of this paper whenever there is no ambiguity.
After system cold boot, initial model requests miss the GPU, CPU, and local storage caches,
causing the model to be downloaded from the cloud storage and loaded into the “caches”
to serve both the current quest and future requests. When one of the caches becomes full,
one or more models are evicted from the cache.
TrIMS leverages the CUDA runtime’s cudaIpc* to share GPU memory across processes. For
Pre-Volta GPUs, the CUDA IPC mechanism utilizes CUDA MPS — an intermediate user
process where the memory allocations are performed. This means that all CUDA operations
end up serialized and executed within the same CUDA MPS context — enabling difference
processes to share the same GPU virtual address space (VAS). For Volta GPUs, NVIDIA
introduced a new feature to allows contexts to share page-table mappings. This makes it
possible for user processes to run using different contexts while still sharing memory.
The MRM abstracts away the model management, exposing two API functions to be used by
the clients: trims::open and trims::close to load and close a model, respectively. MRM
maintains a reference count for each model to determine the number of users currently using
the shared model. The API is shown in Figure 2b. On trims::open, the MRM needs to
handle three cases:

1. GPU cache hit — Model is persistent in GPU memory MRM increments the model’s
reference count and creates a shared memory handle from the device memory owned by
MRM. The handle is then returned to the framework client. Model eviction is triggered
when the intermediate results for a model is greater than the available free memory.

2. GPU cache miss / CPU cache hit — model is persistent in CPU memory The server
queries the current memory utilization of the GPU to see if the model can be copied to
GPU memory. If it can, then GPU memory is allocated and copied; if not, then some
memory needs to be reclaimed — entering the memory reclamation procedure.

3. CPU and GPU cache miss — model is not persistent in memory If the data is not on
local storage, then MRM downloads the model from the cloud. If the data is on disk,
then MRM loads the data from disk using the framework’s serializer. Pinned memory is
allocated on the CPU and the model weights is copied to it. MRM then follows the same
logic as when the data is persistent in CPU memory.

When a TrIMS framework client unloads a model (or the user process exists), a model
unload request is sent to MRM. MRM looks up the model in the database and decrements
its reference count. By default MRM does not free resources for models that have a zero
reference count (not currently used), but MRM can be configured to eagerly reclaim these
models. Models is reclaimed when the memory space for MRM at a specific cache level is
full. Which model to evict to reclaim memory is determined by the eviction policy. TrIMS
supports a pluggable set of common eviction policies such as least recently used(LRU) and
least commonly used (LCU).
To validate the efficiency and generality of our design, we follow a few principles throughout
our implementation — even if disregarding some would have given us better speedup:

• User application rewriting overhead — Since MRM does not modify the framework’s
API, code that is linked with a TrIMS-enabled framework does not require any change.
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Figure 3: A representative sample of the models shown in Table 2 are chosen and are run
on the systems in Table 1 to achieve (a) the best case end-to-end time — when the model
has been pre-loaded in GPU memory — and (b) the worst case end-to-end time — when
the model misses both the CPU and GPU persistence and needs to be loaded from disk.
The speedups are normalized to end-to-end running time of the model without TrIMS. The
yellow dots show the ideal speedup; the speedup achieved by removing any I/O and data-
transfer overhead — keeping only the framework initialization and compute. For models 33
and 36, the achieved speedup is shown on the bar (white) and the ideal speedup is shown
on top of the bar (black).

Name CPU GPU Memory GPU Memory Cached Reads Buffered Disk Reads
System 1 Intel Core i9-7900X TITAN Xp P110 32 GB 12 GB 8 GB/sec 193.30 MB/sec
System 2 Intel Xeon E5-2698 v4 Tesla V100-PCIE 256 GB 16 GB 10 GB/sec 421.30 MB/sec
System 3 IBM S822LC Power8 w/ NVLink Tesla P100-SXM2 512 GB 16 GB 27 GB/sec 521.32 MB/sec
Table 1: We evaluate TrIMS on 3 systems which represent both cloud offerings and consumer
desktop system configurations currently used for DL inference. We use the Linux hdparm
tool to measure the cached disk reads.

TrIMS works within Python, Java, or R. This is an attractive feature, since the benefits
of TrIMS can be leveraged by cloud provider transparently from the user.

• Sharing Granularity — TrIMS supports fixed-size block, layer, and model level sharing
granularity. Sub-model level sharing granularity is interesting when considering layers or
memory across models. For example, models trained using transfer learning [35] could
share their frozen layer weights.

• Multi-GPU and Multi-Node Support — Multi-GPU is usually used when performing
batched inference [13, 16]. TrIMS inherently supports the multi-GPUs by leveraging
Unified Memory (UM) [5].

3 Evaluation

The experiments reported in this paper are based on an implementation of TrIMS on top of
Apache MXNet. Since MXNet is optimized for training and not inference, we apply a set of
optimizations to the original MXNet to improve the inference latency. The optimizations
avoid eager initialization of CUDA resources, remove cuDNN algorithm selection for back-
ward propagation, and simplify the random resource generation. With our optimizations,
MXNet is 6× faster for inference on average than the vanilla MXNet for the suite of models
we use. We use the modified MXNet as our baseline for evaluation.
We evaluate TrIMS on 3 systems (shown in Table 1) using 37 (shown in Table 2) pre-
trained models. The systems selected represent different types of instances that are currently
provisioned in the cloud. System 3 uses the NVLink bus [20, 33] which allows up to 35GB/s
transfer between CPU and GPU. System 3 is used as proxy for understanding our proposed
method’s behavior on high end cloud instances and next generation interconnects currently
being deployed on HPC and cloud systems [36, 34].
We used image processing models as a representative workload because these are currently
the most plentiful in FaaS pipelines. TrIMS is agnostic to the compute patterns of a network
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ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Network [27] [31] [27] [21] [18] [18] [32] [30] [24] [32] [30] [37] [28] [22] [22] [22] [22] [22] [22]
#Layers 16 116 16 16 361 481 472 747 416 416 1102 514 24 526 522 777 769 761 99
ILS 516 111 512 479 122 340 257 399 313 142 493 666 131 423 428 548 721 340 154
MWMF 238 27 233 221 49 145 92 164 129 44 214 285 29 170 171 231 311 231 45
ID 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Network [22] [22] [22] [22] [22] [38] [38] [38] [38] [38] [23] [23] [29] [41] [40] [29] [39] [19]
#Layers 1009 1346 179 268 259 526 522 147 271 267 52 52 32 32 32 38 267 236
ILS 589 889 222 270 275 375 378 147 222 224 34 28 1228 1198 1195 1270 758 244
MWMF 248 391 84 98 98 170 170 59 96 96 4.8 4.8 528 514 513 549 264 88

Table 2: The Image classification models are popular models (and their variants) used
in literature and is used as proxy models that offer a wide variety of sizes and computa-
tional complexity. Both internal layer sizes (ILS) and the model weights memory footprint
(MWMF) are shown in megabytes. The number of models is chosen to be 2× larger than
the available 16GB memory on Systems 2 and 3.
and the analysis would apply to other types of networks.We select 37 pre-trained image
processing models, shown in Table 2, that are based on their popularity in both research
and usage – with some networks having variants. We compare our performance within a
FaaS setting against ideal (where the model loading and data movement takes no time —
ideal is faster than model persistence) and use end-to-end “cold-start” inference as the base
line, since that’s what is currently employed by FaaS environments.
We measure the end-to-end “cold-start” inference of MXNet with and without TrIMS – for
the sake of clarity we omit the input processing time. Figure 3 shows the achieved speedup
on a representative set of the models compared against MXNet that does not utilize TrIMS.
We show two cases: (a) our best case (when there is a GPU cache hit) and (b) our worst
case (when the cache misses both the CPU and GPU).
For best case analysis (Figure 3a), the server needs to create the CUDA IPC handles and the
framework client needs to embed the GPU device pointers within the framework’s container.
This introduces a slight overhead, however it is within 20% of the ideal — ideal defined as
the time for inference where model loading or deserialization times set to zero. We see that
latency speedup improves proportionally to the model size, the system’s data movement
bandwidth, the system’s compute resources, and the model’s compute complexity. For
models, where the I/O overhead is very low, for example SueezeNet (which has a 5MB
memory footprint), we observe only marginal speedup (1.04×). These models are designed
to have a small footprint — targeting edge devices — and are rarely used within the cloud.
A simple optimization is to bypass TrIMS for small models (which can be known statically).
For state-of-the-art networks, such as VGG16-SOD, we observe 24× speedup on System 1.
Even with fast disk and the NVLink interconnect, which mitigates I/O overhead by offering
greater data movement bandwidth, System 3 achieves 6× speedup for VGG16-SOD. For
the worst case analysis (Figure 3b), the MRM needs to load the data from disk, persist the
model on the CPU, copy the data to the GPU, and send the GPU memory handles to the
client. Although we get a slow down, this case assumes there is no model sharing across
pipelines, and therefore uncommon in cloud setting.

4 Conclusion

We propose TrIMS to mitigate the major source of “code start” FaaS latency — the model
loading overhead — and make building complex latency sensitive pipelines with modular
DL components feasible. We do so by decoupling compute from model persistence and
leveraging model sharing across user pipelines. TrIMS moves the bottleneck of DL model
inference to compute, thus making GPU acceleration more appealing and making specialized
novel inference architectures more tractable.
The proposed method is not restricted to DL workloads, but we use DL as a motivating
case. TrIMS was evaluated on three systems that represent current cloud system offerings.
We used 45 DL models and show a speedup of up to 24× for small models and up to
210× for large models. When running concurrent inference, we can increase the overall
system throughput by up to 8×. Our methodology, when applied to DL frameworks, offers
advantages to both cloud providers and users. The isolation along with the significant
memory reduction through model sharing enable cloud providers to over-provision hardware
resources, thus decreasing the total cost of ownership. The benefits of TrIMS to the cloud
providers can be passed down to the users in the form of reducing latency or cost of inference.
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